Sep
17

Global Alliances Virtual Tour & Innovation Talk

Don't miss this Innovation Talk


Join Schneider Electric for a virtual tour of their edge data center solutions with the Alliance Partners. This session will feature demos of the latest Dell, HPE, and Cisco solutions for the edge computing solutions from the Innovation Executive Briefing Center.

Learn more >

P3 strives to bring you quality relevant industry related news.

Continue reading
  70 Hits
70 Hits
Sep
14

Eaton's New Pow-R-Line Xpert series: easier system integration through advanced metering.

Installing power distribution equipment is complex. With so many components to install, even "straightforward jobs" can get complicated. Eaton's made guarding the grid a lot less hassle. The new Pow-R-Line Xpert family of panelboards and switchboards simplifies installation through fully integrated advanced metering capabilities. That means less connecting of loose components and less time spent on each job.

Plus, the Pow-R-Line Xpert family does even more to help your customers monitor system health. With Eaton's advanced proprietary diagnostic algorithms, customers can discover anomalies, overloads and end-of-life breaker conditions before system shutdown. These predictive capabilities are a great service value-add and may help you increase service-call revenues. 

P3 strives to bring you quality relevant industry related news.

Continue reading
  64 Hits
64 Hits
Sep
08

NEC 2020 load calculation changes can make budgets more efficient and increase safety

Members of the National Fire Protection Association (NFPA) recently concluded discussions on updating Article 220.12 of the NEC (National Electrical Code) to align with a series of energy codes and to account for higher-efficiency lighting solutions in commercial and healthcare buildings.

Because many of today's lighting solutions are increasingly energy efficient, lower current demands exist for power systems. These efficiencies necessitate extensive revisions to the calculation table used to determine volt-amperes (VA) per square foot. Many commercial structures today are built to specific energy code editions or a standard established by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). NEC 2020 updates now align the NEC with these energy codes, allowing for easier, more consistent installation in the field.

Not only do changes to Article 220.12 streamline industry codes and standards language, they also help design engineers create load calculations that recognize more efficient lighting loads. This, in my opinion, may result in lower infrastructure costs and help fund enhanced safety solutions.

Article 220.12's new load calculations do more to help designers get it right the first time.
Thomas Domitrovich, vice president, technical sales

The 2020 change

Changes were made for healthcare and commercial buildings. In healthcare, the NEC's Code-making Panel 2 (CMP2) removed demand factors from the lighting load calculation. Hospitals are drastically different from the large facilities that were common 40 years ago. Today, the healthcare industry looks to smaller surgical and outpatient facilities, which require a different approach to lighting load calculations. In addition, CMP2 lacked the data from ASHRAE and other organizations needed to validate regulations reducing hospital lighting to 32 percent. Without the data required to permit the reduction, the derating values for hospital lighting were deleted.

In commercial buildings, VA per square foot values were reduced (with some exceptions) to align with occupancy energy codes. Examples of VA per square foot changes include banks from 3.2 to 1.3; hotels and motels from 2 to 1.7; garages from .5 to .3; hospitals from 2 to 1.6; courthouses from 2 to 1.4. Armories and auditoriums were raised from 1 to 1.7.
Also, commercial occupancies now align with those set by ASHRAE. The calculation table includes footnotes that help NEC users understand the change in occupancy-type designations and clarify older vs. newer occupancy types and language translations. Here are some designation examples:

  • Armories and auditoriums, considered gymnasium-type occupancies
  • Lodge rooms, considered similar to hotels and motels
  • Industrial commercial loft buildings, considered manufacturing-type occupancies
  • Banks, considered office-type occupancies
  • Garages and commercial storage, considered parking garage occupancies
  • Clubs, considered restaurant occupancies
  • Barbershops and beauty parlors, considered retail occupancies
  • Stores, considered retail occupancies
  • The rationale for change

While Article 220.12 has changed little since its NEC adoption in 1971, technology and sustainability initiatives have greatly advanced. Because of energy-efficient technologies for structures, LEED and other energy conservation efforts and energy codes and standards updates, the NEC needed to create parity.

Industry chatter regarding the size of service entrance equipment in relation to actual load, transformers and the like has been heard for at least the last two code cycles. Industry professionals realized that energy-efficient technologies had advanced to a point where load calculations were suspect of being grossly overestimated. Some in the industry claimed load calculation results no longer represented what happens in real-world applications thanks to technologies that use less energy, such as LED lights, fluorescents, high-efficiency transformers and variable frequency drives. Lower energy footprints impact the load calculations used to determine branch circuit size, feeders and everything else associated with power delivery, thus prompting the NEC to make changes that better ensure safety. 

The rationale for change

While Article 220.12 has changed little since its NEC adoption in 1971, technology and sustainability initiatives have greatly advanced. Because of energy-efficient technologies for structures, LEED and other energy conservation efforts and energy codes and standards updates, the NEC needed to create parity.

Industry chatter regarding the size of service entrance equipment in relation to actual load, transformers and the like has been heard for at least the last two code cycles. Industry professionals realized that energy-efficient technologies had advanced to a point where load calculations were suspect of being grossly overestimated. Some in the industry claimed load calculation results no longer represented what happens in real-world applications thanks to technologies that use less energy, such as LED lights, fluorescents, high-efficiency transformers and variable frequency drives. Lower energy footprints impact the load calculations used to determine branch circuit size, feeders and everything else associated with power delivery, thus prompting the NEC to make changes that better ensure safety.

The basis of ASHRAE alignment

When many structures are built, ASHRAE requirements adopted by a state or local jurisdiction dictate VA per square foot, and builders may not exceed those requirements. However, CMP2 understood that not every jurisdiction adopts the latest ASHRAE standard. Some states use older ASHRAE requirements, and some jurisdictions don't adopt the requirements at all. This played a factor in the language included in the NEC.

Lower VA per square foot values influence smaller feeder and service sizes, which, if incorrect, could be very expensive to fix after the fact. NFPA members looked at different types of buildings and ASHRAE research data. The task force associated with this effort plotted VA curves for buildings of various sizes. To gain consensus and achieve change, the NEC lowered the VA values somewhat to account for those jurisdictions that do not adopt the latest version of ASHRAE standards or other energy codes. A compromise was reached in using the 2000 version of ASHRAE 90.1 as the uniform reference for VA values.

Financial impacts and safety implications

Some industry professionals reported that, when placing an ammeter on a structure's service conductors, load currents showed a considerable margin between capacity and actual usage. Facilities typically consume less power due to higher-efficiency lighting equipment that's installed and conservative factors that design engineers may use to ensure future capacity for growth. (Energy-efficient solutions are not required by the Code but are installed because of the energy savings they offer.)

I believe it's important to include right-sized services in structures that meet design goals driven by customer wants and needs. The Code changes will offer financial relief for electrical infrastructures by foregoing equipment that's not needed—but the design engineer must always keep a close eye on the needs of the customer. The changes help the design engineer reduce the size of electrical distribution equipment where permitted by the design goals. This could translate into less wire and other related gear. With that, I hope a focus on providing safety technologies for our electrical workers will grow. Funding originally intended for power distribution can be reallocated to safety solutions for branch, feeder and service entrance equipment.

A thought on using the Code as a design guide

NEC Article 90 states that the Code should not be used as a design reference. Language in Article 220.12 exemplifies why. As mentioned, there's an informational note attached to 220.12. It states, "The unit values of Table 220.12 are based on minimum load conditions and 100 percent power factor and may not provide sufficient capacity for the installation contemplated." In essence, this means guidelines may not be sufficient for an installation. So, while the installation may be safe, it may not turn on because there isn't enough power to serve the load.

In my opinion, designers must focus on customer wants and create load calculations based on a distribution system's current and future needs. Many designers look to the Code before creating their designs, but they should do the opposite. I encourage all planners to meet customer wants and needs first and then check their designs against the Code to assure alignment.

Designers must focus on customer wants and create load calculations based on a distribution system's current and future needs.
Thomas Domitrovich, vice president, technical sales

What might the future hold?

While financial efficiencies and safety improvements were made, the NEC looks to do more to influence load calculations in healthcare environments and commercial structures.

Healthcare

Healthcare representatives believe load calculations are often high because, in an operating room, for example, many receptacles are installed. This makes sense—doctors never want to be without power options when lives hang in the balance. But the additional receptacles cause excessive infrastructure sizing. And practically speaking, many receptacles aren't used. The NEC is currently researching what, if anything, can be done to improve receptacle load calculations for hospitals and other occupancy types, such as clinics, medical offices and ambulatory care centers.

Commercial structures

A task group launched a research project in collaboration with the NFPA Research Foundation. The team is actively measuring the energy usage on receptacles in a variety of commercial buildings to determine if additional load calculation recommendations are an option. I believe the task group's report will heavily influence the public input phase for the 2023 code review.

Better calculations improve efficiency and safety

It's essential to strike a balance when calculating VA. If load calculations are too low, designers may likely plan for and install insufficient equipment, resulting in a situation that's expensive to fix after the fact. If load calculations are too high, it's possible to overpay for equipment that's not needed. I believe Article 220.12's new load calculations do more to help designers get it right the first time. The changes will help designers save money, which will hopefully inspire their clients to reallocate funds for the safety devices used to reduce maintenance on energized equipment in the field.

P3 strives to bring you quality relevant industry related news.

See the original full article at: https://www.eaton.com/us/en-us/company/news-insights/for-safetys-sake-blog/load-calculations.html

Continue reading
  114 Hits
114 Hits
Aug
31

The US has more power outages than any other developed country. Here’s why.

As storms sweep the US this month, millions of people were left without power. The outages went on for days in some places. As infrastructure crumbles, such blackouts may become more common. Outages have been on the rise in recent decades, and utilities might be ill-prepared to take on the dual challenge of responding to intensifying weather events and upgrading aging facilities.

The oldest American power lines date back to the 1880s, and most of today's grid was built in the 1950s and 1960s with a 50-year life expectancy. When these poles, wires, and transformers went up decades ago, the system was initially overbuilt, with growing demand anticipated, says Alexandra von Meier, an electrical engineer at the University of California, Berkeley. But now, it's reaching capacity and old equipment is flickering out.

Estimates on just how bad the problem is vary, though. According to an analysis by Climate Central, major outages (affecting more than 50,000 homes or businesses) grew ten times more common from the mid-1980s to 2012. From 2003 to 2012, weather-related outages doubled. In a 2017 report, the American Society of Civil Engineers reported that there were 3,571 total outages in 2015, lasting 49 minutes on average. The U.S. Energy Administration reports that in 2016, the average utility customer had 1.3 power interruptions, and their total blackout time averaged four hours. The reason these estimates vary may be related in part to the fact that private utilities tend to be guarded about sharing data, according to Sayanti Mukherjee, a civil engineer focused on energy resilience at the University of Buffalo. "If you do a detailed analysis you will see all these sources are different," she says. "There is a lot of discrepancy."

According to one analysis, the United States has more power outages than any other developed country. Research by Massoud Amin, an electrical and computer engineer at the University of Minnesota, found that while people living in the upper Midwest lose power annually for an average of 92 minutes, those in Japan experience only 4 minutes of blackouts per year. In a comparison by the Galvin Electricity Initiative, the average utility customer in the U.S. spent more time with their lights out than eight other industrial countries.

On top of that, utility companies have been slow to perform crucial maintenance, let alone upgrade their systems. Trees are to blame for most outages: high winds send their limbs swingings into lines. In forested places, utility providers are on the hook to trim back boughs so they don't become a hazard in windy and stormy weather. It seems straightforward, but where there's a lot of vegetation this can be a big ask. In forested areas, "The single biggest cost [for electric utilities] is tree maintenance," says B. Don Russell, an electrical engineer at Texas A&M University.

Most Americans—about 68 percent—obtain their electricity through distribution systems managed by investor-owned utilities. By nature, an investor-owned utility is beholden to both its customers and its shareholders, and while customers may prioritize reliable power requiring expensive new equipment, shareholders are generally interested in profit. And that means companies might push replacements off as long as they can. "It's a private industry," says Mukherjee. "So besides caring for the customer, they look for profit … so they try to stretch the lifespan [of equipment] as long as possible."

Some also argue that the companies tend to favor investors over customers. "By and large, utilities are profit-seeking entities which are granted monopolies," says Mark Paul, an environmental economist at the New College of Florida. "What we've seen time and time again is that utilities effectively charge ratepayers for maintenance and then delay that maintenance. And instead, they prioritize shareholder dividends." A case in point, according to Paul, is Pacific Gas & Electric, which serves a large portion of northern California. Earlier this year, PG&E pled guilty to 84 counts of involuntary manslaughter after regulators found that the 2018 Camp Fire was sparked by their poorly-maintained equipment. "This is directly attributable to failure to engage in proper maintenance," says Paul.

If performing basic maintenance now is a struggle, things will only get worse in years to come. The Atlantic Ocean may see double a "normal" years' worth of hurricanes this year, and our extra hot summer could fuel intense blazes in the West (Colorado is already on fire, with over 125,000 acres burning as of Monday); in an August 1 fire outlook, the National Interagency Fire Center found high fire potential in the Great Basin, California, Pacific Northwest, and northern Rockies. The effects of climate change in a given region or year will vary, but overall we can expect weather extremes like wildfires and storms to grow more intense, bringing greater potential to disrupt our already-fraying electrical grid (among many other impacts). "We've become more vulnerable," says von Meier. "Climate change in coming decades is going to have a profound impact."

Upgrading the system is no small task, however. According to the U.S. Department of Energy, the American electric grid is the largest machine on the planet.

Putting wires underground, in so-called grid "hardening," can go a long way in places prone to high winds and fire. Some utilities are putting in work toward the goal; in Southern California, San Diego Gas & Electric has started burying wires in areas at high risk of fires. But it's not cheap. Per PG&E's estimate, converting overhead lines to underground lines costs $3 million per mile in urban settings, and $1 million in less densely populated areas. "Undergrounding an electrical system is extremely cost intensive, and that's why the utilities don't want to do that," says Mukherjee. Implementing such an upgrade may therefore require governments to partner with companies and develop ways to offset those high up-front costs.

But simply performing better monitoring can also go a long way. "We need improved situational awareness and monitoring," Russel says. "Most of the systems respond after a failure has occurred… Now there have been systems developed that are capable of detecting failures at a much deeper level." In his research, he has worked on developing algorithm-based monitoring systems that can essentially watch electricity circuits for abnormal patterns. This monitoring can catch a dying component before it causes an outage. Russel says that some private utilities are starting to implement such monitoring.

Microgrids may be part of the solution, too. These systems are fed by distributed sources, such as solar panels or diesel generators, which can sustain power to a local network when the main grid dies. According to the American Society of Civil Engineers, "Local solutions, such as distributed generation and resilient microgrids, may offer lower-cost alternatives to major system investments particularly in areas at elevated risk from severe weather or other natural disasters." von Meier adds that microgrids can help keep the lights on in the event of a cyberattack on the main grid, too. But it's not a perfect solution. "When you think about who those [microgrids] are most accessible to, it tends to be high-income consumers," says Paul. "It's a failure to address what is a much broader issue."

Paul envisions a more system-level change. One part of that is strengthening the government entities—public utility commissions—that are tasked with regulating private utilities. While many other countries, including European nations and New Zealand, regulate electric distribution at the national level, in America that task is covered by a patchwork of state and local entities. Paul says that these commissions are highly influenced by lobbying. "Closing the revolving door is essential." Cities unhappy with their private electricity provider can also launch their own utility, giving residents a public option. This in turn puts pressure on private utilities to do better, as they would likely lose customers.

In the long-term, the hefty costs of upgrading electric facilities may be worth it. In the case of undergrounding wires, for example, Mukherjee says that those investments will pay off in 30 years by avoiding the economic costs of large-scale outages. While the lights are on over 99 percent of the time, sudden outages still cost at least $150 billion a year. Perhaps it's time to upgrade this aging system. 

P3 strives to bring you quality relevant industry related news.

See the original full article at: https://www.popsci.com/story/environment/why-us-lose-power-storms/

Continue reading
  432 Hits
432 Hits
Aug
17

Iowans Continue To Struggle Following Deadly Derecho

Thousands of Iowans are still coping with the aftermath of a storm that pummeled the state last Monday with 100-mile-per-hour winds — a storm that flattened corn and soybean crops, damaged grain elevators and leveled banks, churches and homes.

More than 158,000 Iowans were still without power as of Friday evening, according to Iowa Public Radio. By Sunday morning, more than 98,000 continued to lack power, according to the monitoring site PowerOutage.US.

"The devastation is widespread. It's intense. Block after block of houses, every one with some amount of damage. Trees piled 6 to 10 feet high along the road. It's like walking through a tunnel of green with some fluorescent orange of placard houses that are unsafe to enter," Tyler Olson, a city council member from Cedar Rapids, told NPR's Weekend Edition on Saturday. "The city itself has been working hard to get roads cleared, so that has taken place in many parts of the city. But we're still without power. The majority of our citizens are without power."

The storm system that flattened crops and toppled trees is called a derecho, a particularly damaging and severe kind of wind storm that can cause hurricane-force winds, tornadoes and heavy rains. As many as 14 million acres of farmland were damaged by the storm, The New York Times reported.

"It's by far the most extensive and widespread damage that we've seen on this farm," Aaron Lehman, who grows corn and soybeans in Polk County in central Iowa, told Harvest Public Media. Lehman, who serves as president of the Iowa Farmers Union, said the damage was worse than a typical tornado.

"Unlike a tornado, which is a mile wide, this stretched for a width of really intense damage — of approximately 40 miles, probably closer to 60-70 miles wide," he said.

In Cedar Rapids, some families were left living in tents. At one badly damaged apartment complex, displaced children played outside amid shredded shingles, rusting nails and the chunks of fiberglass insulation, Iowa Public Radio reported.

"I didn't hear no sirens until our electricity went off. And then we went out and looked out the window and then it just all happened," said 14-year-old Lenberg Phillip in an interview with Iowa Public radio. "We were just watching out the window and then minutes later the roof came off."

Olson says they're still hoping to get a presidential disaster declaration.

"We need electricity," Olson said. "The [Iowa] National Guard arrived a couple of days ago to assist with utility with power back on, but we have citizens without food, without medicine. And we're working as hard as we can as a city to meet those needs but we really need the federal government and their resources." 

President Donald Trump has not signed an emergency declaration yet. On Tuesday, he tweeted: "Sad to see the damage from the derecho in Midwest. 112 mile per hour winds in Midway, Iowa! The Federal government is in close coordination with State officials. We are with you all the way - Stay safe and strong!"

At a press conference in Cedar Rapids on Friday, Republican Gov. Kim Reynolds said the soonest she'd be able to submit an application for a disaster declaration is on Monday, according to Iowa Public Radio.

"We're moving forward, we're coordinating efforts, we're working with the local emergency managers and working with city officials and the mayor," Reynolds said. "They're on the ground. They need to let us know how we can supplement and help them with the work that they're doing and that's how we can efficiently and effectively serve citizens."

This all comes as Iowa continues to battle the COVID-19 pandemic. While the rate of infections appears to be decreasing, now averaging 458 new cases a week with more than 52,000 cases and 975 deaths, experts are worried about how the state will be able to handle two disasters at once.

"[The pandemic] has complicated relief efforts," Olson said. "It's hard to gather people together. It's hard for repair companies, insurance adjusters, to go into homes. Obviously protections that are in place because of the pandemic. And it really, the city's resources were strained before in trying to deal with that and now we're dealing with this probably historic disaster."

 P3 strives to bring you quality relevant industry related news.

See the original full article at: https://www.npr.org/2020/08/16/902868884/the-devastation-is-widespread-iowans-continue-to-struggle-in-aftermath-of-storm#

Continue reading
  330 Hits
330 Hits