The 10 Craziest Code Violations of 2020

Presenting the most bizarre electrical installation mishaps of last year that violated the NEC.

Suspended Ceiling Surprise 

Russ typically likes surprises, but not when they smack him in the head when he's removing suspended ceiling tiles. This junction box was just resting on top of the ceiling tile, and it fell right out when he slid the tile over. Surprise! Boxes must be supported in accordance with one or more of the methods specified in Sec. 314.23(A) through (H). These methods include: securely fastening the box to a surface; rigid support in the form of a brace; using nails or screws to fasten the box; using clamps, anchors, or other identified fittings; or even using support wires. There are no Code rules that permit simply resting the box on top of a removable ceiling tile. Installing a box in this manner could cause physical harm to the unsuspecting worker who moves that ceiling tile. It can also startle someone to the point where it knocks them off the ladder and results in serious injuries. Thankfully, this event did not result in any injuries. Another problem is the lack of cover for this box. Section 314.25 requires a cover, faceplate, lampholder, or luminaire canopy to be installed for a completed installation.

Holiday Hazard

This Christmas lighting display was quite a surprise. Russ discovered it on his way home from teaching class on a Tuesday night. While the gas station manager probably had good intentions, he clearly had no idea of the dangerous conditions he created by draping Christmas lights all over the gas pump island! Some of the light strings were swinging in the breeze and actually contacting the middle dispenser. Extension cords were strewn on the ground from the building to the island, and more cords ran from the island to the perimeter of the lot to illuminate rows of trees. In the photo, one of these orange extension cords is visible on the ground right in front of the pumps. Table 514.3(B)(1) describes the areas within 18 in. horizontally of these dispensers as Class 1, Division II. This Class 1, Division II location also includes the area 18 in. above grade level, extending 20 ft horizontally in all directions from the dispenser enclosures. Wiring and equipment installed in Class 1 locations must comply with Art. 501. These holiday lights and extension cords are not designed for use in hazardous locations. With no intention of being a "Grinch," Russ felt compelled to notify the Fire Prevention office about this unsafe display. The lights were removed the following day.

Airing Your Dirty Laundry

"This was taken from the second floor back deck of an apartment," says Stephen M. Daniels, president of Stephen M. Daniels Electrical Contractors in Lancaster, Pa. "The clothesline was tied to the triplex feeding the main electrical service." Although we cannot be 100% sure if these wires are covered by the scope of the Code, it certainly makes for a great conversation if they are. Section 230.9(A) requires service conductors installed as open conductors or multiconductor cable without an overall outer jacket to maintain a clearance of at least 3 ft from windows that are designed to be opened, doors, porches, balconies, ladders, stairs, fire escapes, or similar locations. Section 230.24(A) requires overhead service conductors to have a vertical clearance of not less than 8 ft above the surface of roofs. This vertical clearance above the roof is required to be maintained for no less than 3 ft in all directions from the edge of the roof. Lastly, Sec. 300.11(D) prohibits cable wiring methods from being used as a means of support for other cables, raceways, or nonelectrical equipment.

How Low Can You Go?

Russ wasn't 100% sure where the service point was for the service conductors installed overhead from the pole on the right-hand side of this building. It could be at the pole, line terminals of the meter, or at the splices on the wires entering the weatherhead. For this discussion, let's say the service point is at the pole. That being the case, the lowest point of the drip loop is way too low and is not NEC compliant. Section 230.24(B)(1) requires a minimum clearance of 10 ft from the lowest point of the drip loop to this sidewalk, which is accessible to pedestrians. These drip loop conductors are only 7½ to 8 ft above the sidewalk. Russ says he's average height and he could almost touch them while standing underneath and reaching up. A person just a little taller than Russ could easily reach them. Regarding another concern, there also appears to be some communications cables "hitching a ride" along the service raceway. This is a violation of Sec. 300.11(C) and Sec. 805.133(B). To be Code compliant, these cables must be independently secured and supported.

This Drives Me Plumb Crazy

As you can see by this photo, plumbers and electricians are still waging a never-ending battle for space. Russ didn't know who was here first, but the result is an installation with no clear working space as required by Sec. 110.26(A). For equipment such as switchboards, panelboards, and other equipment likely to be examined, adjusted, serviced, or maintained while energized, Sec. 110.26(A)(1) requires a minimum working space depth ranging from 3 ft to 5 ft, depending on conditions and voltage. The minimum width of the working space required by Sec. 110.26(A)(2) is 30 in., or the width of the equipment, whichever is greater. The minimum height required by Sec. 110.26(A)(3) for the working space extends from the floor, grade, or platform to a height of 6½ ft or the height of the equipment, whichever is greater. Working in crowded and cramped conditions such as this greatly increases the danger of the already hazardous job of working on energized electrical equipment. Building owners and managers need to recognize this threat and coordinate with all the building trades in an effort to prevent situations such as this from arising on their property.

Rogue Receptacle Installation

Brandon Spivey, owner of Event Horizon & Services in Nashville, Tenn., was kind enough to share this photo with us. He said, "The plugs were covered with a fabric panel with no other housing." Brandon also said he is "new to this all, and learning, but this seems like a Code violation." Brandon, you are correct. There are definitely Code violations here. Section 406.5 requires receptacles to be mounted in identified boxes or assemblies. Attaching receptacles to a couple of wooden blocks does not meet Code minimum requirements. It appears these boards were being used as some type of "box extender." A listed extension ring or listed box extender should have been secured to the flush-mounted box instead. The exposed energized terminals create a shock hazard and violate the rules of Sec. 406.5(I), which requires receptacles to be enclosed so that no live terminals are exposed to contact. The lack of a box cover for the outlet box is a violation of Sec. 314.25. According to Brandon, an equipment grounding conductor (EGC) run separately from the circuit conductors was connected to these isolated ground receptacles. This violates Sec. 250.146(D) and Sec. 300.3(B) if the EGC was not run with the circuit conductors.

Subpar Subpanel Feed

This photo was sent in by Eugene Lawrence with E-1 Electric LLC, in New Orleans. "We noticed this load center at a house in New Orleans," says Lawrence. "We were called out to check on a job done by others. These photos show what we found. They were trying to feed a subpanel. As you can see, the feeder cable coming out of the conduit is connected to an added 'wrong main.'" This was a great catch, Eugene. The original panelboard is not being used in a manner consistent for which it was designed and listed. Installing extra foot lugs on the bus bars and using circuit breakers from the wrong manufacturer violates the requirements of Sec. 110.3(B). The installers also failed to properly identify the grounded neutral conductor with white or gray as required in Sec. 200.6(B). Installing NM cables in PVC conduit located in an outdoor wet location such as this is a violation of Sec. 334.12(B)(4). Section 300.9 reminds us that "where raceways are installed in wet locations above grade, the interior of these raceways shall be considered to be a wet location."

Trespassers Beware!

Stephen M. Daniels, owner of Stephen M. Daniels Electrical Contractors of Lancaster, Pa., was kind enough to share this photo with us. "I was doing a service call for a dead circuit (forgive the pun), and took the panel cover off," said Daniels. "There were missing knockouts, which is how the furry panel guest got in. This is another reason why the Code calls for no open KO in panels or boxes." Russ could not agree more. Installing knockout seals is important for many reasons, including keeping trespassers out of the enclosure. Section 110.12(A) makes it clear that unused openings (except mounting holes and other openings such as drainage holes and air vents that are intended for the operation of the equipment) must be closed in a manner that provides protection substantially equivalent to the wall of the enclosure. Sealing up the unused openings also helps keep arcs and sparks from escaping (and possibly igniting) nearby combustible materials. Debris and liquids can also fall into unsealed and unused openings, causing damage to internal parts of the equipment. While the Code rules will not always prevent every critter from finding a way into enclosures, they will help minimize the possibility.

Unclamped Cable Collection

Who needs cable connectors when the cables can simply be shoved into the panelboard cabinet? This is obviously not the correct way to terminate NM cables in a panelboard cabinet. Section 312.5(C) is very clear when stating "each cable shall be secured to the cabinet, cutout box, or meter socket enclosure." There is an exception relieving this requirement for NM cables installed through sleeves entering the top of surface-mounted enclosures. However, the exception is not applicable to this installation. Similarly, Sec. 300.11(A) requires cables to be securely fastened in place. With no connectors used to secure these cables to this cabinet, we can say these cables are not securely fastened in place. Another violation here is the use of "tandem" or "twin" circuit breakers in this panelboard. This is a circuit-limiting, class CTL-type panelboard designed for only 12 circuits. Using circuit breakers and panelboards in a manner not consistent with their listing or labeling instructions is a violation of Sec. 110.3(B). For panelboards, Sec. 408.54 requires a design to prevent the installation of more overcurrent devices than that for which the panelboard is designed, rated, and listed. This could include notches on certain bus bars to accommodate only certain types of breakers.

Which Way is Up?

At first glance, Russ thought this circuit breaker was turned off. Upon closer examination, he realized it was in the ON position, despite the handle pointing in the down position. There are even two sets of ON/OFF labels facing in opposite ways that add to the confusion. For circuit breaker handles that operate in the vertical position instead of operating rotationally or horizontally, Sec. 240.81 requires the "up" position of the handle to be the ON position. This breaker is off when the handle is up and on when the handle is down. It appears this circuit breaker enclosure may have been designed to be installed upside down as well as right-side up. Installing a circuit breaker in this position may have been permitted at one point, but it has not been allowed for a very long time. It can lead to a terrible mistake if the user is not paying very close attention to the ON/OFF markings on the enclosure. Can you imagine what could happen in an emergency if this switch was accidentally thrown into the ON position when the operator thought he was shutting it off?

 P3 strives to bring you quality relevant industry related news.

See the original full article at:

5G: Opportunities and Challenges for Electric Dist...
The Eaton 2021 Learning and Development Guide is h...
apc confidence eaton dependable mge experience rm integrity schneider reliability apc confidence eaton dependable mge experience rm integrity schneider reliability apc confidence eaton dependable mge experience rm integrity schneider reliability