Jul
16

Eaton’s intelligent power technology advances healthcare modernization

Healthcare providers can experience greater resiliency, efficiency and safety with Eaton technologies at 2019 ASHE Conference

PITTSBURGH, PA… With the continued adoption of digital innovation by healthcare providers to transform the patient care experience, power management company Eaton is helping facility operators understand the potential for intelligent power to improve the resiliency, efficiency and safety of the infrastructure powering these advancements. Eaton is educating healthcare facility leaders on the critical role of intelligent power in healthcare modernization at the 2019 American Society for Healthcare Engineering (ASHE) Annual Conference & Technical Exhibition from July 14 through 17 in Baltimore, Maryland.

"Healthcare providers continue to look for ways to leverage technology to improve the reliability and resiliency of the hospital's essential electrical system," said Justin Carron, global segment manager for healthcare and life sciences, Eaton. "Our intelligent power solutions play an essential role in enabling energy management and achieving compliance, while providing a safe work environment. This technology innovation helps healthcare facilities provide better patient care and aid the personnel who are delivering it."

Eaton's Carron is contributing to the ASHE panel discussion "Powered for Patients DHS NIPP Security & Resilience Challenge Project to Boost Emergency Power Resilience" on Tuesday, July 16. The discussion provides insight into the Powered for Patients initiative, which seeks to leverage intelligent power solutions to help enable faster government response to facilities impacted by power outages due to natural disasters.

Eaton will provide healthcare facility operators with insights into how they can fuel their efforts to modernize their approach to patient care with innovative solutions that include:

  • Eaton's new Pow-R-Line™ XD switchboard, an intelligent solution featuring a compact design that enhances safety and reduces downtime with improved breaker change-out capability.
  • Eaton's Arc Quenching Magnum DS switchgear, industry-first technology that extinguishes arc flash more than 10 times faster than traditional approaches and substantially reduces downtime resulting from arc flash events.
  • A preview of Eaton's Pow-R-Line™ Xpert Series, an intelligent switchboard and panelboard series featuring built-in communications, energy metering and circuit breaker health diagnostics to support a safer, more reliable electrical system.
  • Bypass isolation transfer switches, designed to maintain continuous power and personnel safety during routine maintenance, inspection and testing procedures.

Eaton will also highlight its services from one of the largest and most experienced teams of power system engineers in the industry. Eaton's experts provide services for every stage of a healthcare power system's life cycle, from design to build to support, enabling customers to tailor their systems to best serve the needs of patients.

For more information about Eaton's healthcare solutions learn more at www.eaton.com/healthcare

P3 strives to bring you quality relevant industry related news.

See the original full article at: https://www.eaton.com/us/en-us/company/news-insights/news-releases/2019/eaton-s-intelligent-power-technology-advances-healthcare-moderni.html

Continue reading
  40 Hits
40 Hits
Jul
08

OSHA Seeks to Increase Awareness of Workplace Hazards in Electrical Industry

OSHA wants employers to work to reduce the number of serious injuries, illnesses, and fatalities among engineers, electricians, and other professionals who perform electrical operations 

The U.S. Department of Labor's Occupational Safety and Health Administration (OSHA) is seeking to raise awareness of hazards in the electrical industry in Kansas, Missouri, and Nebraska. OSHA wants employers to work to reduce the number of serious injuries, illnesses, and fatalities among engineers, electricians, and other professionals who perform electrical operations, including work on overhead lines, cable harnesses, and circuit assemblies.

OSHA has resources to help keep workers safe from industry hazards, such as electrocutions, falls, fires and explosions. Its Recommended Practices for Safety and Health Programs can assist employers with identifying and fixing hazards before they cause serious or fatal injuries.

From January 2015 through September 2018, OSHA conducted inspections in the three states after reports of 15 worker hospitalizations and two amputations. Six electrical and wiring installation contractors suffered fatal injuries between October 2012 and September 2018.

"Working with electricity can be safe if employers provide workers with adequate training, and implement appropriate systems to reduce the risk of workplace injuries," says OSHA Regional Administrator Kimberly Stille, in Kansas City, Missouri.

OSHA's On-Site Consultation Program offers no-cost and confidential occupational safety and health services to small- and medium-sized businesses to identify workplace hazards, provide advice for compliance with OSHA standards, and assist in establishing and improving safety and health programs. On-Site Consultation services are separate from enforcement and do not result in penalties or citations.

For more information, visit www.osha.gov.

 P3 strives to bring you quality relevant industry related news.

See the original full article at: https://www.ecmweb.com/safety/osha-seeks-increase-awareness-workplace-hazards-electrical-industry?NL=ECM-05&Issue=ECM-05_20190702_ECM-05_681&sfvc4enews=42&cl=article_10&utm_rid=CPG04000000918978&utm_campaign=27267&utm_medium=email&elq2=b8f8e1cd53dc41419268984cc17f677c&oly_enc_id=6901B0580289B1P

Continue reading
  100 Hits
100 Hits
Jul
01

NEC 2020 code new standards in GFCI protection

During the recent 2020 code review, panel members of the National Electrical Code (NEC) approved changes to ground fault circuit interrupter (GFCI) protection. Those changes dramatically reduce the dangers associated with electrical hazard and shock. The most significant change is the increase of amp protection ratings across all receptacle outlets, both indoor and outdoor, wherever GFCI protection is required. In this blog, I'll discuss how that change informs:

GFCI language expansion
Better protection for basements
Safer equipment maintenance for workers
Safer outdoor outlets
Sweeping global language changes
Further expansion of 50-amp protection

Some updates highlighted in this discussion apply to long-standing requirements. With that, a need for further clarity may still exist in the Code. However, I can say without hesitation that the NEC's 2020 GFCI updates significantly enhance electrical safety for homeowners and electrical workers alike.


GFCI language expansion

The 2020 change

Code-making panel 2 (CMP 2) updated text to read, "All 125-volt through 250-volt receptacles installed in the locations specified in 210.8(A) (1) through (11) and supplied by single-phase branch circuits rated 150 volts or less to ground shall have ground fault circuit interrupter protection for personnel." In layman's terms, the NEC removed amp values across all amp-rated receptacle outlets requiring GFCI protection in the areas listed in this section.

The rationale for change

NEC 2017 language only accounts for 15- and 20-amp receptacle outlets for dwelling units. During 2020 code review meetings, panel members agreed that hazards always exist; if 15- and 20-amp receptacle outlets present a hazard, that hazard also exists on 30-amp and higher receptacle outlets. However, it was difficult to understand the likelihood of a hazardous occurrence when weighed against expanded requirements. Recent home-based electrocution accidents – a 10-year-old girl behind an energized appliance, a child in Oklahoma retrieving a pet behind a clothes dryer, a 10-year-old Houston boy playing hide and seek — helped panel members realize the need for change. In light of these tragic events, we now have a requirement that sets a higher standard across more areas of the Code, though there are some exceptions discussed later in this blog.

What might the future hold?

The NEC mandates GFCI protection in many areas of the home: bathrooms, garages, outdoor receptacles, crawl spaces, basements, kitchens and anything within six feet of a sink or water source. While that may seem like a lot, the entirety of a home is not covered. The reality is when people have a problem with a tripped circuit, it's entirely possible they'll use an extension cord to plug into a receptacle outlet that's not GFCI protected. Doing so does nothing to eliminate the original hazard potentially caused by the device in use. I hope that NEC members account for the human factor and require GFCI coverage throughout the home during the next code review.



Better protection in basements

The 2020 change

The NEC expanded GFCI protection for dwelling units with basements both finished and unfinished.

The rationale for change

Often afterthoughts that present unique hazards, basements are typically not as well maintained as other areas of the home. Further, environments are often wet and damp, and moisture is a great conductor. These code updates help ensure that accidents due to factors such as leakage current and contact with water are considerably lessened or eliminated.

What might the future hold?

Many rooms in a home are already required to have GFCI protection. While it feels like the most logical code progression, others in the industry still pushback on requiring GFCIs throughout a home claiming financial concerns or installation problems. As with the parental language update, I believe this code change can inspire discussions to include GFCIs throughout the home.


Safer equipment maintenance for workers

The 2020 change

The NEC expanded GFCI protection under Article 210.63(A) for HVAC equipment and Article 210.63(B) for indoor service equipment and indoor equipment requiring dedicated space.

The rationale for change

Equipment location is at the crux of this update. While HVAC equipment in the basement is covered now that all basement circuits are GFCI protected, HVAC equipment located in attics and other areas would likely not have GFCI protection. CMP 2 recognized that many HVAC areas are typically tight working spaces where technicians perform justified energized work (they can't troubleshoot a de-energized circuit). In essence, the update assures equipment requiring service has a GFCI-protected receptacle outlet for ready access.

What might the future hold?

Because this is the NEC's first venture into expanding 210.63, I expect some inspectors and contractors may not see eye to eye on code language. Industry discussions across the country and during future review cycles will help the NEC make future improvements.


Safer outdoor outlets

The 2020 change

The NEC updated the Code for outdoor outlets supplied by single-phase branch circuits rated 150 volts to ground or less, 50 amps or less. Key to this update: it extends beyond receptacle outlets to include all outlets. Now all hard-wired equipment falls under the Code's purview.

The rationale for change

One downfall of the electrical business is that it's more reactive than proactive, with accidents often the catalyst for change. Numerous incidents inspired this code change, including an accident involving a 12-year-old boy who jumped over a fence and touched an AC condenser unit with an electrical fault. The outer metal housing was electrified and the child was fatally electrocuted immediately upon coming in contact with the condenser and fence simultaneously.

What might the future hold?

GFCI technology is unforgiving in that it's built to detect even the slightest power variance, and when expanded to include outlets impacting new types of loads, questions arise. With GFCIs installed, leakage-current trips may be near constant, rendering large equipment unusable. In the future, I hope industries rethink products with acceptable leakage current, hertz and frequency values to reduce future compatibility issues.

Further, this change will likely spur discussions related to current GFCI requirements focusing only on receptacle outlets. Hardwiring equipment does not eliminate the electrical hazard. I venture someone will propose public inputs during the next code-review cycle to challenge details about receptacle outlets versus outlets requiring GFCI protection.



Sweeping global language changes

The 2020 change

The NEC reviewed all locations with a GFCI requirement and aligned with Article 210.8. Updates were made in many locations to include text, such as "in addition to the requirements of 210.8" and similar, to clarify language and eliminate misinterpretation.

The rationale for change

The NEC included Article 210.8(B) for other than dwelling units in 1993. Before its inclusion, builders relied on requirements in later chapters of the Code (chapters five through seven), for safety guidance. For example, RV Park GFCI requirements added in 1978 aligned with 210.8's 15- and 20-amp receptacle outlet GFCI protection philosophy at that time. NEC 2017 created some confusion when 210.8(B) increased GFCI protection requirements beyond 15- and 20-amp receptacle outlets for other than dwelling units. This presented a challenge: a chapter two requirement applied a generally wider level of GFCI protection. This conflicted with chapter five, which has less coverage of GFCI protection.

The correlating committee recognized similar conflicts exist across industries and formulated a task group that challenged every code panel to look at their GFCI requirements and attempt to align them with 210.8's 50-amp increase.

What might the future hold?

Each code panel performed their review; some made changes, others did not. There is room for discussion in future revisions of the Code regarding shock hazards in the special other than dwelling unit applications. I believe the NEC will soon increase its focus on GFCIs and hopefully add clarity as each application in chapters five through seven approaches GFCI protection differently.



Further expansion of 50-amp protection

NEC articles to watch

While representatives in agriculture and RV industries have valid concerns about nuisance tripping, I believe the NEC should revisit Article 547 for agricultural buildings and Article 551 for RVs and RV parks to address valid shock hazard concerns and consider increasing GFCI protection to 50 amps.

The rationale for change

Farming and RV industries rely on circuits that operate at well over 20 amps, yet no safety requirements exist. Much of the equipment used in these industries can be quite old with leakage current a serious concern. In my opinion, the Code lacks parity in how safety requirements exist in some industries and not in others. That must change.

The studies needed to promote change exist. The University of Iowa and the University of Nebraska have uncovered many incidents where farmers lost their lives due to faulty agricultural electrical equipment. Further, RV "hot skin," a situation where the entirety of an RV's outer housing becomes energized due to electrical faults, can kill in an instant, as was the case when a young boy died when touching an RV. If RV parks and farms running 30- to 50-amp receptacles without GFCI protection is not deemed a concern worth addressing, how can anyone claim running 30- to 50-amp receptacles outside of dwelling units is a hazard? Common sense dictates both are hazards and change is necessary.

What might the future hold?

I appreciate that equipment compatibility issues on farms and at RV parks may require much time and financial capital to resolve. However, I cannot condone sitting idle as lives are lost. I hope a series of discussions during the next code review cycle inspires commissioning an NFPA Fire Protection Research Foundation study to further understand the implications of expanding GFCI protection beyond 15 and 20 amps in RV parks and farms. Let's study the problem, understand the challenges and determine solutions that increase safety.



Let's continue to make great strides in safety

Extending the amp requirement across all receptacles is a milestone that cannot be understated — it will change how industries work. Many of the changes I've discussed represent the first step toward increasing safety, with industry feedback being critically important in making improvements in 2023. With that, we already have some of the data needed to suggest the changes desperately needed in the RV and farming industries. I call on my NEC colleagues to begin safety conversations now so that we as a group can protect more lives from electrical shock.

Article by Thomas Domitrovich, P.E., LEED AP, Eaton vice president, technical sales, May 29, 2019

P3 strives to bring you quality relevant industry related news.

See the original full article at: https://www.eaton.com/us/en-us/company/news-insights/for-safetys-sake-blog/NEC-2020-increases-GFCI-protection.html

Continue reading
  153 Hits
153 Hits
Jun
24

IEEE PES ESMO 2019

 IEEE PES ESMO 2019 is coming up, June 24-27 in Columbus, Ohio. The event features two days of technical sessions and an indoor trade show and another two days of outdoor demonstrations. 

The 14th international conference on transmission and distribution construction, operation and live line maintenance offers opportunities to network with your peers and learn about best practices in the utility industry.

P3 strives to bring you quality relevant industry related news.

Continue reading
  160 Hits
160 Hits
Jun
17

NEMA releases Surge Protection Guide

The first in a new series of publications intended to provide guidance on the evaluation, specification, and use of surge protective devices.
The National Electrical Manufacturers Association (NEMA), Rosslyn, Va., has released the first in a new series of publications intended to provide guidance on the evaluation, specification, and use of surge protective devices (SPD) in low-voltage power distribution system applications.

"Surge Protective Device Specification Guide for Low-Voltage Power Distribution Systems, Part 1" (NEMA SPD 1.1-2019) is written for those who use or specify SPDs and others affiliated with the low-voltage SPD marketplace, "so that uniformity of specifications and parameters will improve comprehension, application, and utilization," said Saad Lambaz, Global Standards Manager at Littelfuse, Inc., NEMA Low Voltage Surge Section Member.

The guide includes SPD ratings related to the operating system and performance, a specification checklist, and information on surge current ratings, modes of protection, and general grounding practices.

P3 strives to bring you quality relevant industry related news.

See the original full article at: https://www.ecmweb.com/surge-protection/guide-evaluating-surge-protective-devices

Share Tweet 0Save

Continue reading
  194 Hits
194 Hits